Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 748
1.
bioRxiv ; 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38712306

Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the three-dimensional orientations and diffraction-limited positions of ensembles of fluorescent dipoles that label biological structures, and we share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model our samples, their excitation, and their detection using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labelled giant unilamellar vesicles, fast-scarlet-labelled cellulose in xylem cells, and phalloidin-labelled actin in U2OS cells. Additionally, we observe phalloidin-labelled actin in mouse fibroblasts grown on grids of labelled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales.

2.
Cancers (Basel) ; 16(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38730579

TIICs are critical components of the TME and are used to estimate prognostic and treatment responses in many malignancies. TIICs in the tumor microenvironment are assessed and quantified by categorizing immune cells into three subtypes: CD66b+ tumor-associated neutrophils (TANs), FoxP3+ regulatory T cells (Tregs), and CD163+ tumor-associated macrophages (TAMs). In addition, many cancers have tumor-infiltrating M1 and M2 macrophages, neutrophils (Neu), CD4+ T cells (T-helper), CD8+ T cells (T-cytotoxic), eosinophils, and mast cells. A variety of clinical treatments have linked tumor immune cell infiltration (ICI) to immunotherapy receptivity and prognosis. To improve the therapeutic effectiveness of immune-modulating drugs in a wider cancer patient population, immune cells and their interactions in the TME must be better understood. This study examines the clinicopathological effects of TIICs in overcoming tumor-mediated immunosuppression to boost antitumor immune responses and improve cancer prognosis. We successfully analyzed the predictive and prognostic usefulness of TIICs alongside TMB and ICI scores to identify cancer's varied immune landscapes. Traditionally, immune cell infiltration was quantified using flow cytometry, immunohistochemistry, gene set enrichment analysis (GSEA), CIBERSORT, ESTIMATE, and other platforms that use integrated immune gene sets from previously published studies. We have also thoroughly examined traditional limitations and newly created unsupervised clustering and deconvolution techniques (SpatialVizScore and ProTICS). These methods predict patient outcomes and treatment responses better. These models may also identify individuals who may benefit more from adjuvant or neoadjuvant treatment. Overall, we think that the significant contribution of TIICs in cancer will greatly benefit postoperative follow-up, therapy, interventions, and informed choices on customized cancer medicines.

3.
J Microsc ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38747464

In September 2023, the two largest bioimaging networks in the Americas, Latin America Bioimaging (LABI) and BioImaging North America (BINA), came together during a 1-week meeting in Mexico. This meeting provided opportunities for participants to interact closely with decision-makers from imaging core facilities across the Americas. The meeting was held in a hybrid format and attended in-person by imaging scientists from across the Americas, including Canada, the United States, Mexico, Colombia, Peru, Argentina, Chile, Brazil and Uruguay. The aims of the meeting were to discuss progress achieved over the past year, to foster networking and collaborative efforts among members of both communities, to bring together key members of the international imaging community to promote the exchange of experience and expertise, to engage with industry partners, and to establish future directions within each individual network, as well as common goals. This meeting report summarises the discussions exchanged, the achievements shared, and the goals set during the LABIxBINA2023: Bioimaging across the Americas meeting.

4.
Article En | MEDLINE | ID: mdl-38721791

Eczema is a systemic autoimmune disease characterized by inflammation and skin manifestation with a range of comorbidities that include physical and psychological disorders. Despite recent advancements in understanding the mechanisms involved in atopic dermatitis, current marketed products have shown varying results with more side effects. The present ob-jective of the research studies is to develop new agents for eczema that cut down the cost of the novel drugs available and also improve the efficacy with the least adverse effects. Natural compounds and medicinal plants have been traditionally used since ancient civilizations. Now-adays, research in the herbal field is at its peak. One such natural compound, flavonoid, was found to be beneficial for the treatment of eczema. This review describes the use of certain flavonoid products to prepare preparations suitable for the treatment of prophylaxis or eczema. This is especially true for prophylaxis or atopic eczema treatment. These compounds exhibit anti-inflammatory, anti-inflammatory, anti-inflammatory, and anti-inflammatory properties and are, therefore, used in treatments to prevent allergies, inflammation, and irritation to the skin. We also dock the flavonoid derivatives used with the protein associated with the inhibi-tion of eczema for better lead optimization. These preparations appear to be used for cosmetic, dermatological, or herbal remedies as a local application.

5.
Cytotechnology ; 76(3): 301-311, 2024 Jun.
Article En | MEDLINE | ID: mdl-38736730

The high-throughput metabolic viability-based colorimetric MTT test is commonly employed to screen the cytotoxicity of different chemotherapeutic drugs. The assay assumes a cell density-dependent linear correlation with the MTT spectral absorbance. Therefore, the present study aimed to compare the cytotoxicity assessment between the MTT assay and gold standard cell number enumeration. The cytotoxicity was induced by Cisplatin, Etoposide, and Doxorubicin in human lung epithelial adenocarcinoma cells (A549) and cervix carcinoma (HeLa) cell lines. The mitochondrial mass was estimated, and immunoblotting of succinate dehydrogenase (SDH-A) was performed following drug treatment in both cell lines. Student's t-test paired analysis was employed to calculate the significance of the results, where the value p < 0.05 was considered statistically significant. The drug-induced cytotoxic response estimated by MTT absorbance did not show any significant difference with respect to control, and no correlation was observed with the enumerated cell number in both A549 and HeLa cells. Interestingly, per-cell metabolic viability was found to be increased by 1.18 to 3.26-fold (p < 0.05) following drug treatment. Further, mechanistic investigation revealed a drug concentration-dependent significant increase in mitochondrial mass (1.21 to 4.2-fold) and upregulation of SDH protein (50-70%) as well as enzymatic activity with respect to control in both A549 and Hela cells. The limitation of the MTT assay for drug-induced cytotoxicity assessment is due to increased mitochondrial mass and SDH upregulation in surviving cells, leading to enhanced formazan formation. This leads to a lack of correlation between cell number and MTT spectral absorbance, suggesting that the MTT assay may provide an erroneous conclusion for cytotoxicity assessment.

6.
J Family Med Prim Care ; 13(3): 971-976, 2024 Mar.
Article En | MEDLINE | ID: mdl-38736784

Background: Basic sanitation and waste management have always remained a central issue in India. The country launched its flagship sanitation program - Swachh Bharat Abhiyan (SBA) (Clean India Mission) in 2014 to abolish open defecation and achieve universal sanitation coverage. Objective: This study aimed to examine barriers to toilet use and women's menstrual hygiene practices in relation to the availability of toilets among rural residents. Materials and Methods: Using a cross-sectional design and multi-stage sampling method, 120 households were selected from rural villages of the Mayurbhanj district of Odisha. Structured questionnaires and direct observation methods were used for data collection. Results: All the houses had SBA latrines, yet 25% population defecated outside. About 40% households reportedly never cleaned their toilets. Most menstruating women (86.2%) preferred to change their menstrual pads/cloths in their bedroom instead of bathrooms. Incomplete construction was reported as the major reason for not using toilets. Large family size and low caste were found to be other predictors of non-use of toilets. Rural women did not use toilets for menstrual purposes as they do not consider these places as clean and safe. Conclusion: This study clearly suggests that constructing toilets without adequate behaviour change interventions would not solve the problem of hygiene and sanitation in India, particularly in rural areas. There must be adequate monitoring of SBA scheme and utilization of funds for toilet usage. Development and implementation of suitable behaviour change strategies for toilet use in rural areas are essential to achieve the goal of open defaecation-free India.

7.
Curr Biol ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38692277

Mitochondrial cristae architecture is crucial for optimal respiratory function of the organelle. Cristae shape is maintained in part by the mitochondrial contact site and cristae organizing system (MICOS) complex. While MICOS is required for normal cristae morphology, the precise mechanistic role of each of the seven human MICOS subunits, and how the complex coordinates with other cristae-shaping factors, has not been fully determined. Here, we examine the MICOS complex in Schizosaccharomyces pombe, a minimal model whose genome only encodes for four core subunits. Using an unbiased proteomics approach, we identify a poorly characterized inner mitochondrial membrane protein that interacts with MICOS and is required to maintain cristae morphology, which we name Mmc1. We demonstrate that Mmc1 works in concert with MICOS to promote normal mitochondrial morphology and respiratory function. Mmc1 is a distant relative of the dynamin superfamily of proteins (DSPs), GTPases, which are well established to shape and remodel membranes. Similar to DSPs, Mmc1 self-associates and forms high-molecular-weight assemblies. Interestingly, however, Mmc1 is a pseudoenzyme that lacks key residues required for GTP binding and hydrolysis, suggesting that it does not dynamically remodel membranes. These data are consistent with the model that Mmc1 stabilizes cristae architecture by acting as a scaffold to support cristae ultrastructure on the matrix side of the inner membrane. Our study reveals a new class of proteins that evolved early in fungal phylogeny and is required for the maintenance of cristae architecture. This highlights the possibility that functionally analogous proteins work with MICOS to establish cristae morphology in metazoans.

8.
Aesthetic Plast Surg ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38740627

BACKGROUND: This study aimed to elucidate the effects of botulinum toxin A (BoNT-A) treatment for patients diagnosed with masseter hypertrophy on the temporalis muscle, with a particular focus on assessing alterations in muscle thickness, electromyographic (EMG) activity, and the development of muscle pain. METHODS: The present randomized triple-blinded clinical trial enrolled 26 female participants aged between 25 and 50 years complaining about masseter hypertrophy. Participants received 75U of BoNT-A (abobotulinumtoxinA) in both masseter muscles and after three months were randomized to receive a second treatment session of saline solution (S-BoNT-A) or BoNT-A (M-BoNT-A). Longitudinal assessments included temporalis muscle thickness through ultrasound, EMG activity, subjective pain, and masseter prominence severity after one, three, and six months of the first injection session. Muscle thickness, EMG, and subjective pain were analysed using two-way ANOVA with repeated measures and post hoc Sidak test, and for masseter prominence severity, Friedman and Mann-Whitney tests were used. RESULTS: Regarding inter-group comparisons, a higher muscle thickness (p < 0.02) and a higher EMG activity (p < 0.01) were found in the M-BoNT-A group at the 6-month follow-up. For subjective pain assessments, inter-group comparisons showed a higher prevalence of painful regions in M-BoNT-A group at the 6-month follow-up (p < 0.02). No significant differences were found in masseter prominence severity at the 6 months assessment between groups. CONCLUSION: BoNT-A treatment for masseter hypertrophy lead to structural and functional changes in the temporalis muscle, presenting higher changes after multiple injections of this treatment. LEVEL OF EVIDENCE I: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

9.
Am J Hum Genet ; 111(4): 729-741, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38579670

Glutamine synthetase (GS), encoded by GLUL, catalyzes the conversion of glutamate to glutamine. GS is pivotal for the generation of the neurotransmitters glutamate and gamma-aminobutyric acid and is the primary mechanism of ammonia detoxification in the brain. GS levels are regulated post-translationally by an N-terminal degron that enables the ubiquitin-mediated degradation of GS in a glutamine-induced manner. GS deficiency in humans is known to lead to neurological defects and death in infancy, yet how dysregulation of the degron-mediated control of GS levels might affect neurodevelopment is unknown. We ascertained nine individuals with severe developmental delay, seizures, and white matter abnormalities but normal plasma and cerebrospinal fluid biochemistry with de novo variants in GLUL. Seven out of nine were start-loss variants and two out of nine disrupted 5' UTR splicing resulting in splice exclusion of the initiation codon. Using transfection-based expression systems and mass spectrometry, these variants were shown to lead to translation initiation of GS from methionine 18, downstream of the N-terminal degron motif, resulting in a protein that is stable and enzymatically competent but insensitive to negative feedback by glutamine. Analysis of human single-cell transcriptomes demonstrated that GLUL is widely expressed in neuro- and glial-progenitor cells and mature astrocytes but not in post-mitotic neurons. One individual with a start-loss GLUL variant demonstrated periventricular nodular heterotopia, a neuronal migration disorder, yet overexpression of stabilized GS in mice using in utero electroporation demonstrated no migratory deficits. These findings underline the importance of tight regulation of glutamine metabolism during neurodevelopment in humans.


Epilepsy, Generalized , Glutamate-Ammonia Ligase , Glutamine , Animals , Humans , Mice , Brain/metabolism , Epilepsy, Generalized/genetics , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Glutamates/metabolism , Glutamine/genetics , Glutamine/metabolism
10.
iScience ; 27(4): 109549, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38623328

Independently run single microgrids (MGs) encounter difficulties with inadequate self-consumption of local renewable energy and frequent power exchange with the grid. Combining numerous MGs to form a multi-microgrid (MMG) is a viable approach to enhance smart distribution networks' operational and financial performance. However, the correlation and coordination of intermittent power generation within each MG network pose many techno-economic challenges for energy sharing and trading. This review offers a comprehensive analysis of these challenges within the framework of MMG operations. It examines state-of-the-art methodologies for optimizing multi-energy dispatch and scrutinizes contemporary strategies within energy markets that contribute to the resilience of power systems. The discourse extends to the burgeoning role of blockchain technology in revolutionizing decentralized market frameworks and the intricacies of MMG coordination for reliable and cost-effective energy distribution. Overall, this study provides ample inspiration for theoretical and practical research to the new entrants and experts alike to develop new concepts for energy markets, scheduling and novel operating models for future resilient multi-energy networked systems/MMGs.

11.
Chemphyschem ; : e202400283, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38634178

Halocarbons have important industrial applications, however they contribute to global warming and the fact that they can cause ozone depletion. Hence, the techniques that can capture and recover the used halocarbons with energy efficiency methods have recently received greater attention. In this contribution, we report the capture of dichlorodifluoromethane (R12), which has high global warming and ozone depletion potential, using covalent organic polymers (COPs). The defect-engineered COPs were synthesized and demonstrated outstanding sorption capacities, ~226 wt% of R12 combined with linear-shaped adsorption isotherms. We further identified the plausible microscopic adsorption mechanism of the investigated COPs via grand canonical Monte Carlo simulations applied to non-defective and a collection of atomistic models of the defective COPs. The modeling work suggests that significant R12 adsorption is attributed to a gradual increment of porosities due to isolated/interconnected micro-/meso-pore channels and the change of the long-range ordering of both COPs. The successive hierarchical-pore-filling mechanism promotes R12 molecular adsorption via moderate van der Waals adsorbate-adsorbent interactions in the micropores of both COPs at low pressure followed by adsorbate-adsorbate interactions in the extra-voids created at moderate to high pressure ranges. This continuous pore-filling mechanism makes defective COPs as promising sorbents for halocarbon adsorption.

12.
Dev Cell ; 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38579720

The blueprint of the mammalian body plan is laid out during gastrulation, when a trilaminar embryo is formed. This process entails a burst of proliferation, the ingression of embryonic epiblast cells at the primitive streak, and their priming toward primitive streak fates. How these different events are coordinated remains unknown. Here, we developed and characterized a 3D culture of self-renewing mouse embryonic cells that captures the main transcriptional and architectural features of the early gastrulating mouse epiblast. Using this system in combination with microfabrication and in vivo experiments, we found that proliferation-induced crowding triggers delamination of cells that express high levels of the apical polarity protein aPKC. Upon delamination, cells become more sensitive to Wnt signaling and upregulate the expression of primitive streak markers such as Brachyury. This mechanistic coupling between ingression and differentiation ensures that the right cell types become specified at the right place during embryonic development.

13.
Chem Rev ; 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38683669

The energy demand for traditional vapor-compressed technology for space cooling continues to soar year after year due to global warming and the increasing human population's need to improve living and working conditions. Thus, there is a growing demand for eco-friendly technologies that use sustainable or waste energy resources. This review discusses the properties of various refrigerants used for adsorption cooling applications followed by a brief discussion on the thermodynamic cycle. Next, sorbents traditionally used for cooling are reviewed to emphasize the need for advanced capture materials with superior properties to improve refrigerant sorption. The remainder of the review focus on studies using engineered nanoporous frameworks (ENFs) with various refrigerants for adsorption cooling applications. The effects of the various factors that play a role in ENF-refrigerant pair selection, including pore structure/dimension/shape, morphology, open-metal sites, pore chemistry and possible presence of defects, are reviewed. Next, in-depth insights into the sorbent-refrigerant interaction, and pore filling mechanism gained through a combination of characterization techniques and computational modeling are discussed. Finally, we outline the challenges and opportunities related to using ENFs for adsorption cooling applications and provide our views on the future of this technology.

14.
BMJ Case Rep ; 17(4)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684359

We present a case of Takayasu's arteritis in a woman in her 30s, who exhibited visual symptoms and ophthalmic manifestations of the disease, specifically Takayasu's retinopathy stage 4, in both eyes. Despite severe narrowing of all branches of the aortic arch and compromised perfusion in both upper limbs, she had no history of intermittent claudication. Doppler study and CT angiography revealed diffuse circumferential wall thickening of bilateral common carotid, subclavian and axillary arteries. Treatment involved retinal laser photocoagulation and immune suppression. This case underscores that advanced Takayasu's retinopathy can be an initial presentation of Takayasu's arteritis even in a state of severely compromised peripheral limb circulation.


Takayasu Arteritis , Humans , Takayasu Arteritis/complications , Takayasu Arteritis/diagnosis , Female , Adult , Retinal Diseases/etiology , Retinal Diseases/diagnosis , Axillary Artery/diagnostic imaging , Subclavian Artery/diagnostic imaging , Computed Tomography Angiography , Laser Coagulation
16.
Article En | MEDLINE | ID: mdl-38575360

INTRODUCTION: Young newly married women and first-time parents (FTPs), particularly those living in slum settlements, have a high unmet need for modern contraceptive methods to limit and space births. We describe an intervention in which adolescents and youth sexual and reproductive health (AYSRH) services tailored to FTPs were incorporated into the government's existing family planning (FP) program in 5 cities of Uttar Pradesh. We examined the effect of this intervention on modern contraceptive use among FTPs aged 15-24 years. METHODS: To assess the effect of this pilot, in 2019, 1 year after the implementation of the program, we analyzed community-based output tracking survey data on 549 married women who are FTPs in the pilot cities. These FTPs were compared with 253 women who were FTPs from other cities where the program was implemented without a specific focus on FTPs. Descriptive statistics and multivariate logistic regression analysis were applied to understand the association between exposure to FP information, either through accredited social health activists or through service delivery points, and use of modern contraceptives. RESULTS: Use of modern contraceptives was higher among FTPs in the 5 pilot cities than non-pilot cities (39% vs. 32%; P<.05). The interaction effect of city type and exposure to the information showed a positive association between modern contraceptive use and program exposure, greater in pilot cities than non-pilot cities. CONCLUSIONS: Higher uptake of modern contraceptives among young women may be achieved when an FTP-focused intervention is layered on the government's existing FP programs. Future studies with a longer duration of implementation, in a wider geography, and with longitudinal design are recommended to provide more robust measures of high impact intervention/practices in urban areas.

17.
Biol Trace Elem Res ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38592566

Cadmium, a highly toxic heavy metal, can cause severe damage to several vital organs including the kidney, liver, and brain. Many of the natural compounds found in aromatic plants have beneficial pharmacological properties. Eugenol is one such compound reported to have anti-inflammatory and antioxidant properties. The aim of this study is to investigate whether eugenol, a natural compound found in aromatic plants known for its anti-inflammatory and antioxidant properties, can mitigate the detrimental effects of cadmium exposure on cardiac inflammation, oxidative stress, and dyslipidemia. Male albino rats were subjected to randomization into four groups, each comprising six animals, to investigate the potential of eugenol in mitigating cadmium-induced toxicity. All groups received oral gavage treatment for 21 days. Following the treatment regimen, cardiac tissue specimens were collected for analysis. The assessment of cardiac antioxidant status entailed the determination of enzymatic activities including catalase, SOD, GST, and GPx. Additionally, levels of lipid peroxidation, reduced glutathione, protein carbonyl oxidation, and thiol levels were quantified in the cardiac tissue samples. To evaluate cardiac damage, marker enzymes such as LDH and CK-MB were measured. Furthermore, the inflammatory response in the cardiac tissue induced by cadmium exposure was assessed through the quantification of NO, TNF-α, and IL-6 levels. Additionally, molecular docking and dynamics studies were conducted utilizing autodock and GLIDE methodologies. Cadmium administration markedly enhanced the activities of LDH and CK-MB, prominent cardiac markers. Furthermore, cadmium treatment also demonstrated a significant decrease in the reduced glutathione levels and antioxidant enzyme activities. Significant elevation of the inflammatory markers was also observed in the cadmium-treated group. Eugenol treatment effectively ameliorates cadmium-induced biochemical changes. This study underscores the potent anti-inflammatory and antioxidant attributes of eugenol. Co-administration of eugenol alongside cadmium exhibited remarkable protective efficacy against cadmium-induced cardio-toxicity. Eugenol demonstrated the capability to reinstate the cellular redox equilibrium of rats subjected to cadmium treatment to levels akin to those of the normal control group.

18.
Nutrients ; 16(6)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38542811

This paper explores the multifaceted nature of ß-glucan, a notable dietary fiber (DF) with extensive applications. Beginning with an in-depth examination of its intricate polysaccharide structure, the discussion extends to diverse sources like oats, barley, mushrooms, and yeast, emphasizing their unique compositions. The absorption and metabolism of ß-glucan in the human body are scrutinized, emphasizing its potential health benefits. Extraction and purification processes for high-quality ß-glucan in food, pharmaceuticals, and cosmetics are outlined. The paper underscores ß-glucan's biofunctional roles in immune modulation, cholesterol regulation, and gastrointestinal health, supported by clinical studies. The review discusses global trade dynamics by tracing its evolution from a niche ingredient to a global commodity. In summary, it offers a comprehensive scientific perspective on ß-glucan, serving as a valuable resource for researchers, professionals, and industries exploring its potential in the dietary fiber landscape.


beta-Glucans , Humans , beta-Glucans/chemistry , Biological Availability , Dietary Fiber , Cholesterol , Saccharomyces cerevisiae , Avena/chemistry
19.
J Orthod Sci ; 13: 9, 2024.
Article En | MEDLINE | ID: mdl-38516113

BACKGROUND: To evaluate and compare the distribution of stress and displacement of teeth during mandibular arch distalization using buccal shelf screws. MATERIALS AND METHODS: Three three-dimensional finite element models of mandibular arch were constructed with third molars extracted. Models 1, 2, and 3 were constructed on the basis of the lever arm heights of 0 mm, 3 mm, and 6 mm, respectively, between the lateral incisor and canine. A buccal shelf screw was placed at the area in the second molar region with the initial point of insertion being inter-dental between the first and second molars and 2 mm below the mucogingival junction. MBT pre-adjusted brackets (slot size 0.022 × 0.028") were placed over the clinical crown's center with a 0.019 × 0.025" stainless-steel archwire on three models. A retraction force of 300 g was applied with buccal shelf screws and a lever arm bilaterally using nickel-titanium closed coil springs. The displacement of each tooth was calculated on X, Y, and Z axes, and the von Mises stress distribution was visualized using color-coded scales using ANSYS 12.1 software. RESULT: The maximum von Mises stress in the cortical and cancellous bones was observed in model 1. The maximum von Mises stress in the buccal shelf screw and the cortical bone decreased as the height of the lever arm increased. Applying orthodontic forces at the level of 6 mm lever arm height resulted in greater biomechanical bodily movement in distalization of the mandibular molars compared to when the orthodontic forces were applied at the level of 0 mm lever arm height. CONCLUSION: Displacement of the entire arch may be dictated by a direct relationship between the center of resistance of the whole arch and the line of action generated between the buccal shelf screw and force application points at the archwire, which makes the total arch movement highly predictable.

20.
Front Immunol ; 15: 1202017, 2024.
Article En | MEDLINE | ID: mdl-38545119

Engineered T cell-based adoptive immunotherapies met promising success for the treatment of hematological malignancies. Nevertheless, major hurdles remain to be overcome regarding the management of relapses and the translation to solid tumor settings. Properties of T cell-based final product should be appropriately controlled to fine-tune the analysis of clinical trial results, to draw relevant conclusions, and finally to improve the efficacy of these immunotherapies. For this purpose, we addressed the existence of atypical T cell subsets and deciphered their phenotypic and functional features in an HPV16-E7 specific and MHC II-restricted transgenic-TCR-engineered T cell setting. To note, atypical T cell subsets include mismatched MHC/co-receptor CD8 or CD4 and miscommitted CD8+ or CD4+ T cells. We generated both mismatched and appropriately matched MHC II-restricted transgenic TCR on CD8 and CD4-expressing T cells, respectively. We established that CD4+ cultured T cells exhibited miscommitted phenotypic cytotoxic pattern and that both interleukin (IL)-2 or IL-7/IL-15 supplementation allowed for the development of this cytotoxic phenotype. Both CD4+ and CD8+ T cell subsets, transduced with HPV16-E7 specific transgenic TCR, demonstrated cytotoxic features after exposure to HPV-16 E7-derived antigen. Ultimately, the presence of such atypical T cells, either mismatched MHC II-restricted TCR/CD8+ T cells or cytotoxic CD4+ T cells, is likely to influence the fate of patient-infused T cell product and would need further investigation.


Immunotherapy, Adoptive , Neoplasm Recurrence, Local , Humans , CD4-Positive T-Lymphocytes , Receptors, Antigen, T-Cell/genetics , T-Lymphocyte Subsets
...